

Integrated Optimized Charging and Economic Analysis of V2G Enabled School Bus System

¹Megh KC (meghbaha@buffalo.edu), ²Ziqi Song, PhD (zqsong@buffalo.edu)

Department of Civil, Structural and Environmental Engineering, University at Buffalo, NY

SCAN ME

Background

Scenarios

- ◆ Battery Electric School Buses (BESB) are idle for three quarters of the day and 1/3 in year
- ◆ School Buses have predictive daily / seasonal schedules and routes
- ESB carries larger batteries
- V2G is challenging because of challenges like unmanaged charging, battery degradation & high demand charges
- No or less explored area: V2G benefits specific to ESB system compared to transit buses

Motivation

- Grid stress mitigation due to growing electrification and peak demand period
- Utilized idle BEBs potential for V2G to create revenue stream
- Develop solutions to manage battery degradation, demand charges and operational costs associated with V2G operation
- Research gaps in BESBs V2G integration

Objectives

- Develop smart charging schedules considering time of use electricity pricing and demand charges
- Formulate a MIP optimization model incorporating battery ageing, demand charges and operational constraints for BESB system
- Provide insights into financial benefits and offer guidance on optimal battery sizing in V2G adoption

Problem Setting

This problem description lays the foundation for developing and optimized smart charging and V2G integration considering real-world school bus operation challenges and economic factors.

- Realistic school bus operation system consideration
- Two types of bidirectional V2G chargers are considered
- Charger selection based on the operational needs
- Fixed bus routes and schedules are gathered from schools schedules
- Time of use electricity prices for peak and off-peak periods and same for demand charges
- Optimization of both charging and discharging schedules

Mathematical Model Formulation

Mixed Integer Programming (MIP) model formulation

Min Daily Operation Cost (DoC)

$$\sum\nolimits_k b^k * a^k + \sum\nolimits_{t \in T} p_t w_t^c - \sum\nolimits_{t \in T} s_t w_t^d + \sum\nolimits_{k \in K} \sum\nolimits_{t \in T} d_{k,t} + \frac{\mu_\lambda}{30} \sum\nolimits_{k \in K} \sum\limits_{t \in t_{on}/t_{off}} \lambda_t$$

Min Annualized Cost (AC)

$$\sum_{winter} (DOC_{weekday} + DOC_{weekend}) + \sum_{summer} DOC$$

Subject to,

- Assigned bus route and bus index constraints
- ♦ Charging discharging constraints
- ◆ Demand charge constraints
- ♦ Battery lifecycle and degradation constraints
- ◆ Battery consumption and battery bounds constraints

Figure: Battery degradation concept due to charging discharging cycles

Heuristic Implementation

 $temp(t) = 100, \ cooling_rate = 0.98, \ max_iteration = 1000$ for iteration in range(max_iteration): $current_obj \ (f \ (S')) = DOC$ $assign \ best_schedule = none$ $assign \ best_obj \ (f \ (S_2))$ $calculate \ \ \frac{(f \ (S_2)) - (f \ (S'))}{(f \ (S'))}$ $if \ \ \Delta \leq 0 :$ $current_obj \ (f \ (S')) = best_obj \ (f \ (S_2))$ $best_schedule = reset_schedule()$ else: $calculate \ acceptance \ probability \ (p_r) = e^{-\frac{\Delta}{t}}$ $generate \ random \ probability \ r \ [0,1]$ $if: \ \ r > p_r : break$ $else: \ \ current_obj \ (f \ (S')) = best_obj \ (f \ (S_2))$ $current_obj \ (f \ (S')) , best_schedule$ $calculate \ t = t * cooling_rate$ $if \ t < 0.00001$

Results: Case 1

SoC over Time in a Day for V2G Case [Winter & Weekday]

Test Case Results for Stage1 and Stage 2

Figure: Smart charging discharging schedules during seasonal and weekend holidays

DOC and Optimal Battery Sizing

DOC (\$) considering Demand Charge in Model No_V2G No_V2G

Figure: Demand charge optimization & DOC saving in V2G system

Results: Case 2

Figure: Selling electricity price sensitivity for V2G and no-V2G cases

Acknowledgement

and no-V2G cases

This research was supported in part by the US Department of Energy, under award number DE-EE0009213, and the Center for Advancing Sustainability through Powered Infrastructure for Roadway Electrification (ASPIRE), a National Science Foundation (NSF) ERC, under award number EEC-1941524.

Conclusion & Way Forward

- ◆ Significant economic benefits of V2G participation
- ◆ Annual profit per bus \$5310.40 after accounting battery purchase cost, charging costs, battery degradation and demand charge costs
- ◆ The smart charging optimization reduced demand charges by 32.5% demonstrating model efficiency & practicality of BESB V2G participation
- ◆ Sensitivity analysis depicted that future reductions in battery prices and increase in energy acquisition further enhances profitability of V2G integration
- Findings have significant policy implications
- ⇒ We need to address V2G operational challenges like bidirectional charger technology and charger prices
- ⇒ Exploring BESB as a portable energy storages to enhance grid resiliency during emergency situations/ natural disasters