

Understanding Mode Choice Behavior of People with Disabilities: A Case Study in Utah

³Dr. Keunhyun Park (keun.park@ubc.ca), ⁴Keith Christensen (keith.christensen@usu.edu)

¹Megh KC (megh.b.kc@usu.edu), ²Ziqi Song, PhD (zqsong@buffalo.edu)

¹Department of Civil and Environmental Engineering, Utah State

²Department of Civil, Structural and Environmental Engineering, University at Buffalo, NY

³Forest Resources Management, The University of British Columbia, Vancouver, BC

⁴Department of Landscape Architecture & Environmental Planning, Utah State University, UT

Rationale and Justification

ANNUAL MEETING

Figure 1: Travel modes used by various group of population

- ◆Travel limited disability population: 8-10% in US &
- ◆ People with Disabilities (PwDs) have unique travel needs compared to the People without Disabilities
- ◆ Existing transportation models failed to capture different travel behavior of PwDs
- Models for general population may not be suitable for PwDs
- ◆Comparison of mode choice behavior among groups (PwDs vs PwoDs)

◆ Drive alone: Binary [Household (HH) car > 0 and driving License-Yes]

◆Transit: Binary [For all except person revealed no transit use]

◆Nonmotorized: Binary [HH bike >0 or Walk distance <5 miles]

Data collection &

Descriptive Results

MNL Modeling

Conclusion

Figure 3 : Methodological Flowchart

Mode share

prediction

Objectives

◆ Development of Multinomial Logit (MNL) mode choice model for PwDs & comparison to PwoDs

Choice Sets

◆Carpool: For All

- ◆Identification of key factors influencing the disability mode choice behavior
- ◆ Value of Travel Time (VOTT) estimation using revealed preference (RP) survey dataset
- ◆ Policy Implications for inclusive and equitable transportation system planning

Data & Methodology

Figure 2: Study area and Disabled trip

Variables

- ◆Dependent: Mode Choice
- ◆Independent
- 1. Household & Sociodemographic
- HH size, HH income, Vehicle ownership, HH workers, HH Bikes #
- 2. Traveler Characteristics
- Age, gender, Disability (travel limiting), Driving license. Employment
- 3. Trip Characteristics
- Trip length, Trip duration, transit frequency, Trip frequency
- 4. Built Environment

Residential type / location

Modeling

Three Multinomial Logit Models

◆Travel time & travel costs are generic

2. PwoDs

3. PwDs

Modal Specification

Utility Functions for all modes $U_{Auto} = \beta_{time} * T_{Auto} + \beta_{co} * Co_{Auto}$ $U_{cp} = ASC_{cp} + \beta_{time} * T_{cp} + \beta_{co} * Co_{cp} + \beta_{cp_ind} * Var_{ind}$ $U_{tr} = ASC_{tr} + \beta_{time} * T_{tr} + \beta_{co} * Co_{tr} + \beta_{tr_ind} * Var_{ind}$ $U_{nm} = ASC_{nm} + \beta_{time} * T_{nm} + \beta_{nm_ind} * Var_{ind}$

◆ Drive alone (reference) & ASCs for other available modes

1. General Population model: To account the effect of disability

Modal correctness check

- $1. -2LL = -2 (LL_{base} LL_{estimated})$ χ^2 value from χ^2 distribution table
- 2. McFadden rho-squared (ρ^2) value

Results

miles/trip]

Network

Dataset

characteristics environment

- ♦ PwDs use Carpool trips 25% more than PwoDs group ◆PwDs take shorter trip for all modes except carpool trip distance [6.39 vs 5.76
- ◆Transit use: PwDs trip length 36% shorter than PwoDs
- ♦ PwDs make fewer trips (all modes): 18.6% lesser trips

Drive alone than PwoDs

MNL Model Results Conclusions Model3- PwDs ♦ VOTT for disable group has lower consideration over

-0.031*

0.922 **

0.602 **

0.573 *

1.77***

-1.22 ***

0.948 **

1.04 **

2.78 ***

1337

1212

0.314

112.329 (df=80)

Model3- PwDs

-0.0515 ***

-0.0088 ***

3.50

NM Transit

Transit

0.799 **

2.33 ***

3.15 ***

-2.04 ***

Model2– PwoDs

0.959 ***

-0.41 ***

0.557 ***

0.204 ***

2.71 ***

0.574 ***

0.463 ***

67505

48122

0.305

112.329 (df=80)

Transit

Transit

0.428 ***

-0.297 ***

0.767 ***

1.58 ***

-0.414 ***

0.205 *

0.615 ***

1.15 ***

Employment

Residential Location

Vehicle ownership

Household size

Household Adult worker

Transit Frequency

Goodness-of-fit statistics

over PwoDs

Carpool

0.776 ***

0.139 *

-0.517 ***

0.457 **

0.816 **

0.373 **

1.44 ***

1.03 ***

-1.82 ***

0.505 **

2.22 ***

0.618 *

NM Transit

◆ PwDs have lower consideration for value of travel time

♦ PwDs use carpool the most, has 50% fare reduction in

-0.0458 ***

-0.00225 ***

transit trips, mostly works parttime

Carpool

1.24 ***

0.467 ***

-0.415 ***

0.125 ***

0.0486 *

-0.189 ***

0.051 **

0.444 ***

1.42 ***

0.333 ***

-1.87 ***

-0.847 ***

0.296 ***

0.536 ***

0.213 ***

0.049 **

-0.312 ***

Model1- General Population

-0.318

Variable

Parttime

Low (<35k)

Medium (35-50 k)

CBD

Urban

Sample size:

Likelihood ratio test:

Rho-square-bar:

Variable

(ref: no dis-

ability)

χ^2 (df)

Carpool

♦ Overall, PwDs tend to use transit over

travel time whereas strong for counterpart group
◆General model showed disability is associated with in-
creased transit & decreased NM mode over Drive alone

- ◆ Variables that share **similar** mode choice behavior among both groups are: Income, Vehicle ownership & **Driving license**
- ◆Contrasting variables among groups in mode choice behavior are: Gender, Employment, Age, Residential **location & Transit use**
- ♦ PwDs having HH size>3, no vehicle ownership & no driving license had strong preference for transit compared to other available modes

Policy Implications

than counterpart group

- 0.906 *** 1.206 *** ♦ Metropolitan Planning Organizations should include nonmotorized mode in their travel demand modeling as they have significant share in trip behavior -0.33 ***
 - ◆Contrasting mode choice behavior among diverse group suggests consideration of PwDs in travel demand modeling
 - ♦General model & PwDs model results suggests we explicitly need to address inclusive transit policy

Limitations & Future Works

- ♦ Uneven distribution of sample among disability groups
- ◆Travel time was not disintegrated in to access, egress, and waiting times or in-vehicle time & out of vehicle times
- ⇒Consideration of different types of disabilities, their severity & duration of disability
- ⇒Inclusion of panel effects using more sophisticated models like mixed logit model

Acknowledgement

This work was supported by National Institute on Disability, Independent Living, and Rehabilitation Research: [Grant Number 90DPCP0004]