Understanding Mode Choice Behavior of People with Disabilities: A Case Study in Utah ³Dr. Keunhyun Park (keun.park@ubc.ca), ⁴Keith Christensen (keith.christensen@usu.edu) ¹Megh KC (megh.b.kc@usu.edu), ²Ziqi Song, PhD (zqsong@buffalo.edu) ¹Department of Civil and Environmental Engineering, Utah State ²Department of Civil, Structural and Environmental Engineering, University at Buffalo, NY ³Forest Resources Management, The University of British Columbia, Vancouver, BC ⁴Department of Landscape Architecture & Environmental Planning, Utah State University, UT ### Rationale and Justification ANNUAL MEETING Figure 1: Travel modes used by various group of population - ◆Travel limited disability population: 8-10% in US & - ◆ People with Disabilities (PwDs) have unique travel needs compared to the People without Disabilities - ◆ Existing transportation models failed to capture different travel behavior of PwDs - Models for general population may not be suitable for PwDs - ◆Comparison of mode choice behavior among groups (PwDs vs PwoDs) ◆ Drive alone: Binary [Household (HH) car > 0 and driving License-Yes] ◆Transit: Binary [For all except person revealed no transit use] ◆Nonmotorized: Binary [HH bike >0 or Walk distance <5 miles] Data collection & **Descriptive Results** MNL Modeling Conclusion Figure 3 : Methodological Flowchart Mode share prediction ## Objectives ◆ Development of Multinomial Logit (MNL) mode choice model for PwDs & comparison to PwoDs **Choice Sets** ◆Carpool: For All - ◆Identification of key factors influencing the disability mode choice behavior - ◆ Value of Travel Time (VOTT) estimation using revealed preference (RP) survey dataset - ◆ Policy Implications for inclusive and equitable transportation system planning ### Data & Methodology Figure 2: Study area and Disabled trip #### **Variables** - ◆Dependent: Mode Choice - ◆Independent - 1. Household & Sociodemographic - HH size, HH income, Vehicle ownership, HH workers, HH Bikes # - 2. Traveler Characteristics - Age, gender, Disability (travel limiting), Driving license. Employment - 3. Trip Characteristics - Trip length, Trip duration, transit frequency, Trip frequency - 4. Built Environment Residential type / location # Modeling ### **Three Multinomial Logit Models** ### ◆Travel time & travel costs are generic 2. PwoDs 3. PwDs **Modal Specification** **Utility Functions for all modes** $U_{Auto} = \beta_{time} * T_{Auto} + \beta_{co} * Co_{Auto}$ $U_{cp} = ASC_{cp} + \beta_{time} * T_{cp} + \beta_{co} * Co_{cp} + \beta_{cp_ind} * Var_{ind}$ $U_{tr} = ASC_{tr} + \beta_{time} * T_{tr} + \beta_{co} * Co_{tr} + \beta_{tr_ind} * Var_{ind}$ $U_{nm} = ASC_{nm} + \beta_{time} * T_{nm} + \beta_{nm_ind} * Var_{ind}$ ◆ Drive alone (reference) & ASCs for other available modes 1. General Population model: To account the effect of disability #### **Modal correctness check** - $1. -2LL = -2 (LL_{base} LL_{estimated})$ χ^2 value from χ^2 distribution table - 2. McFadden rho-squared (ρ^2) value ## Results miles/trip] Network Dataset characteristics environment - ♦ PwDs use Carpool trips 25% more than PwoDs group ◆PwDs take shorter trip for all modes except carpool trip distance [6.39 vs 5.76 - ◆Transit use: PwDs trip length 36% shorter than PwoDs - ♦ PwDs make fewer trips (all modes): 18.6% lesser trips # Drive alone than PwoDs #### MNL Model Results Conclusions Model3- PwDs ♦ VOTT for disable group has lower consideration over -0.031* 0.922 ** 0.602 ** 0.573 * 1.77*** -1.22 *** 0.948 ** 1.04 ** 2.78 *** 1337 1212 0.314 112.329 (df=80) Model3- PwDs -0.0515 *** -0.0088 *** 3.50 NM Transit **Transit** 0.799 ** 2.33 *** 3.15 *** -2.04 *** **Model2– PwoDs** 0.959 *** -0.41 *** 0.557 *** 0.204 *** 2.71 *** 0.574 *** 0.463 *** 67505 48122 0.305 112.329 (df=80) Transit **Transit** 0.428 *** -0.297 *** 0.767 *** 1.58 *** -0.414 *** 0.205 * 0.615 *** 1.15 *** **Employment** **Residential Location** **Vehicle ownership** Household size **Household Adult worker** **Transit Frequency** **Goodness-of-fit statistics** over PwoDs Carpool 0.776 *** 0.139 * -0.517 *** 0.457 ** 0.816 ** 0.373 ** 1.44 *** 1.03 *** -1.82 *** 0.505 ** 2.22 *** 0.618 * NM Transit ◆ PwDs have lower consideration for value of travel time ♦ PwDs use carpool the most, has 50% fare reduction in -0.0458 *** -0.00225 *** transit trips, mostly works parttime Carpool 1.24 *** 0.467 *** -0.415 *** 0.125 *** 0.0486 * -0.189 *** 0.051 ** 0.444 *** 1.42 *** 0.333 *** -1.87 *** -0.847 *** 0.296 *** 0.536 *** 0.213 *** 0.049 ** -0.312 *** **Model1- General Population** -0.318 **Variable** **Parttime** Low (<35k) Medium (35-50 k) CBD Urban Sample size: Likelihood ratio test: Rho-square-bar: Variable (ref: no dis- ability) χ^2 (df) Carpool ♦ Overall, PwDs tend to use transit over | travel time whereas strong for counterpart group | |---| | ◆General model showed disability is associated with in- | | creased transit & decreased NM mode over Drive alone | - ◆ Variables that share **similar** mode choice behavior among both groups are: Income, Vehicle ownership & **Driving license** - ◆Contrasting variables among groups in mode choice behavior are: Gender, Employment, Age, Residential **location & Transit use** - ♦ PwDs having HH size>3, no vehicle ownership & no driving license had strong preference for transit compared to other available modes ## **Policy Implications** than counterpart group - 0.906 *** 1.206 *** ♦ Metropolitan Planning Organizations should include nonmotorized mode in their travel demand modeling as they have significant share in trip behavior -0.33 *** - ◆Contrasting mode choice behavior among diverse group suggests consideration of PwDs in travel demand modeling - ♦General model & PwDs model results suggests we explicitly need to address inclusive transit policy ## Limitations & Future Works - ♦ Uneven distribution of sample among disability groups - ◆Travel time was not disintegrated in to access, egress, and waiting times or in-vehicle time & out of vehicle times - ⇒Consideration of different types of disabilities, their severity & duration of disability - ⇒Inclusion of panel effects using more sophisticated models like mixed logit model ### Acknowledgement This work was supported by National Institute on Disability, Independent Living, and Rehabilitation Research: [Grant Number 90DPCP0004]